GI MOTILITY: NEW TECHNOLOGIES

Presenters:

David Patterson, MD
Susan DePasquale, MSN, CGRN

Virginia Mason Medical Center
Gastroenterology Department
Seattle, Washington
MOTILITY TESTING: a potpourri of G1 issues

ESOPHAGUS:
- GASTROESOPHAGEAL REFLUX DISEASE (GERD)
- DYSPHAGIA

STOMACH:
- CYCLICAL VOMITING
- GASTROPARESIS

SMALL INTESTINE:
- IRRITABLE BOWEL SYNDROME (IBS)
- MALABSORPTION

ANORECTAL:
- CONSTIPATION
- FECAL INCONTINENCE
OBJECTIVES:

• THE GI LAB: Be aware of the expanding variety of GI studies in today’s GI Lab;

• ESOPHAGEAL MANOMETRY: understand some of the new technology and nursing practice trends (related pearls);

• CASE STUDIES: Relate various motility case outcomes – esophageal, gastric and anorectal – to a medical plan of care;
THE GI LAB & TEAMWORK

GI LAB OPERATIONS:
• EQUIPMENT – Computer technology and electronics;
• SUPPLIES – Medication and accessories to equipment;
• THE SUITE – is typically:
 ✓ fully ambulatory and linked to an endoscopy unit;
 ✓ not needing a great deal of space, i.e. 14 x 16 ft;
 ✓ visibly appealing;
• MOTILITY TEAM - may include:
 ✓ specially trained physicians, mid level and nurse/tech
 ✓ clinic support staff and rotating residents/fellows;
THE GI LAB & TEAMWORK

REFERRAL TEAM: i.e. PCP, GI or surgical consults;

RESEARCH TEAM: Examples to follow (slide #19);

ONLINE AND JOURNAL TEAM: helpful learning resources - American Motility Society, GI Motility Online, Gastro.org (AGA), SGNA.org and The DAVE Project;

PRODUCT TEAM: Sandhill Scientific, Sierra Instruments, GIVEN Imaging, EZEM, Quintron, and others ...
EXPANDING TECHNOLOGY: An Overview

STANDARD MOTILITY TESTS IN A GI LAB:

ESOPHAGEAL MANOMETRY –
• Water perfusion pressure system;
• Solid state or air fill pressure system;
• High definition pressure system with impedance;
• (HRM) High Resolution Manometry or “real time” image;

ESOPHAGEAL pH STUDY –
• Nasal catheter 24 hour with external recording device;
• Wireless capsule 48 hour with external recording device;

represents the minimum tests offered in a smaller GI Lab
EXPANDING TECHNOLOGY: An Overview

ADDITIONAL TESTS:

ELECTROGASTROGRAM (EGG) –
• Gastric emptying study with a water load test;
• External electrodes, computer software and recorder;

HYDROGEN BREATH TEST – breath sample analyzer;

ANORECTAL MANOMETRY/BIOFEEDBACK –
• Water perfusion pressure system;
• Solid state/air fill pressure system and HRM;
EXPANDING TECHNOLOGY: An Overview

OTHER SPECIALIZED DIAGNOSTIC TESTS:

• Small Bowel Motility Testing
• Esophageal capsule endoscopy
• Small Bowel Capsule Endoscopy
• Other emerging technologies –
 ✓ Smart pill
 ✓ Pelvic floor nerve testing

Tests offered in addition to standard motility testing generally provided in larger, research centers
The GI LAB provides useful and definitive testing for the diagnosis and management of:

- Common GI problems, i.e. GERD, chronic constipation or fecal incontinence;
- Less common problems – dysphagia and other motor abnormalities (mouth to anus);
- GI Motility and functional disorders affect 25% of the U.S. population and 40% of people with GI issues who require a referral;
ESOPHAGEAL MOTILITY TESTING

FROM PEAKS & VALLEYS
TO
COLOR CONTOURS WITH DEFINITION
Standard tests often part of the medical history to evaluate esophageal function:

- **Esophageal Manometry** - to study esophageal muscle contraction;

- **Esophageal pH Monitoring** – to measure changes in the acidity of the esophagus, i.e. gastroesophageal reflux disease (GERD);
ESOPHAGEAL MOTILITY TESTING: Standard tests

• X-ray Studies - a fluoroscope is used to follow the progress of a barium mixture during the process of swallowing, or by using a radioactive scanning technique;

• EGD – is usually done prior to the manometry and pH testing;
ESOPHAGEAL MANOMETRY TESTING: Purpose & accepted methods

PURPOSE:

• most useful to evaluate dysphagia, non-cardiac chest pain and prior to anti-reflux surgery;
• helpful to exclude a GI tract condition, i.e. achalasia or scleroderma;

ACCEPTED MANOMETRIC METHODS:

• water perfusion and solid state pressure system;
• Conventional and multiple pressure sensor spacing with impedance and HRM;
ESOPHAGEAL MANOMETRY TESTING: A rapidly changing technology

- **WATER PERFUSION** - single intralumen/side port, pull-through method;

- **SOLID STATE (ELECTRONIC)** – limited channels spaced apart, pull-through method;

- **HIGH DEFINITION/IMPEDEENCE & HIGH RESOLUTION** - multichannel pressure sensors and impedance electrodes;
ESOPHAGEAL MANOMETRY TESTING: A rapidly changing technology

INTRALUMINAL OR LIMITED CHANNEL CATHETER
ESOPHAGEAL MANOMETRY TESTING: A rapidly changing technology

HIGH DEFINITION (IMPEDENCEness) –
- Multiple channels with pressure transducers and impedance electrodes;
- Concurrently measures bolus transit and esophageal body/sphincter pressure changes;

HIGH RESOLUTION (HRM)- axial measurement or “real time” of all events occurring during a swallow episode;
ESOPHAGEAL MANOMETRY TESTING: A rapidly changing technology

combined impedance & manometry catheter

combined impedance-manometry recording
ESOPHAGEAL MANOMETRY TESTING: A rapidly changing technology

High Resolution Manometry (HRM) -
- 36 Pressure and 18 Impedence sensors
- All circumferential sensors
- Display pressure and bolus transit
ESOPHAGEAL MANOMETRY TESTING: High Resolution Manometry (HRM)

TECHNOLOGY –
- not new technology but a refined methodology;
- greater detail (conversion of waveform to color display);
- an esophageal motor event in a space-time continuum;

DATA INTERPRETATION –
- added benefit is a simplified data interpretation;
- can be achieved with less training;
ESOPHAGEAL MANOMETRY TESTING: High Resolution Manometry (HRM)

UNDERLYING CONCEPT –
by vastly increasing the number of sensors and reducing the space in between the sensors there is improved representation of the entire esophagus pressure profile;

CHALLENGES –
• increased quantity of data;
• the resulting need to develop new algorithms;
ESOPHAGEAL MANOMETRY TESTING: What are we looking for?

Approach to Analysis of Esophageal Manometry

- Detectable LES pressure > 5 mmHg?
 - Actual resting LES pressure?
- Complete LES relaxation with swallowing?
 - Nadir pressure? Duration?
- Esophageal pressure waves >10 mmHg at all sites?
 - Site of failure?
- Pressure waves peristaltic?
 - Simultaneous?
- Pressure waves above effective amplitude?
 - Wave amplitude?
- Do motor patterns explain symptoms?

COMMON TERMS:
- LES (abbreviation) - Lower Esophageal Sphincter
- NADIR (Definition) – resting sphincter pressure
- UES (ABBR)
ESOPHAGEAL MANOMETRY TESTING: What are we looking for?

www.sierrainstruments.org website provides video tutorials of waveform and contour plots.
ESOPHAGEAL MANOMETRY TESTING: Challenging cases!

HIATAL OR PARAESOPHAGEAL HERNIA

TIGHT ACHALASIA

ZENKER’S DIVERTICULUM
HELLO, I’M MR. ANXIETY NEUROSES. I WANT TO FEEL NOTHING AND I HAVE A REALLY BAD GAG REFLEX!

THE GI LABORATORY: A CALM AND PATIENT CENTERED ENVIRONMENT

ESOPHAGEAL MANOMETRY TESTING: CASES THAT TEST YOU!
ESOPHAGEAL MANOMETRY TESTING: A great opportunity for nursing research

- Studied 103 patients (52f, 51m; 53 + 14.9yrs) who underwent conventional esophageal manometry;
- Conclusion: “Although patients are not really fond of esophageal manometry, the vast majority of them find the procedure acceptable and would be willing to undergo a repeat procedure. Most patients prefer upper GI-endoscopy to esophageal manometry, which is probably mainly a matter of iv sedation”.

Prospective Trial Using Virtual Vision® as Distraction Technique in Patients Undergoing Gastric Laboratory Procedures. Seattle, WA. (1996). Kozarek, Richard A. MD; Raltz, Shirly L. MSN, RN; Neal, Lillian RN; Wilbur, Patricia RN; Stewart, Sally RN; Ragsdale, Jill BSN, RN.

Conclusion: “Following a standardized approach, both patients and NURSES reported that VV was a valuable distraction technique (88% and 86%, respectively). Moreover, 26 of 33 patients (79%) who had undergone previous gastric laboratory testing preferred distraction therapy to previous testing and a total of 41 of 50 patients (82%) would use VV again in conjunction with conventional testing”.
ESOPHAGEAL MANOMETRY TESTING: Patient preparation

PRIOR TO TEST DATE:
• Written pre-procedure instructions;
• Telephone interview 1-2 days prior;

DAY OF PROCEDURE:
• NPO 4 hours prior and off medications 24 hours prior;
• Teaching and Informed consent;
• Calming measures – music, privacy, a picture or other visual focus and anxiolytic sedation (if indicated);
• Patient position – comfortably reclining or standing;
ESOPHAGEAL MANOMETRY TESTING: An example of standard nasal intubation

• **TOPICAL** – Lidocaine 2% gel to nare and Hurricaine spray to throat;
• **CATHETER** – Lubricated with lidocaine 2% gel;
• **SEDATION** – Versed 0.5 mg incremental dosing, max. 3 mg (optional for anxiety or severe gagging);
• **GASTRIC BASELINE** – Catheter is swallowed with sips of water until the gastric baseline is obtained;
• **WATER BOLUS** – Start with 2 ml (test) amount and progress to 5 ml amount for the esophageal analysis;
ESOPHAGEAL MANOMETRY TESTING: An example of wire-guided nasal intubation

- **TOPICAL** – Lidocaine 2% gel to nare and Hurricaine spray to throat;
- **CATHETER** – Lubricated with lidocaine 2% gel;
- **PATIENT POSITION** – Lateral recumbent (straighten torso for large hiatal hernia);
- **WATER BOLUS** – Start with 2 ml (test) amount and progress to 5 ml amount for the esophageal analysis after the patient is awake enough to effectively swallow;
ESOPHAGEAL MANOMETRY TESTING: An example of wire-guided nasal intubation

• SEDATION – versed and fentanyl according to MD discretion;
• MONITORING – Follow your institutional guidelines for sedated patients post-procedure;
• GASTRIC BASELINE –
 ✓ a flexible coated guidewire .035 is inserted through an ultrathin or pediatric endoscope;
 ✓ the wire-guided catheter is inserted over the guidewire until a gastric baseline is obtained and prior to starting the study;
<table>
<thead>
<tr>
<th>Related pearls from the field</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ESOPHAGEAL MANOMETRY TESTING:</td>
<td></td>
</tr>
<tr>
<td>THE ANXIOUS PATIENT AND EXCESSIVE SWALLOWER:</td>
<td></td>
</tr>
<tr>
<td>• COMFORTABLE POSITION AND FOCUS - I.E. Lay the patient on their side to reduce probe stimulation and gagging or by facing toward a monitor image;</td>
<td></td>
</tr>
<tr>
<td>• ENVIRONMENT OF CARE - A less anxious patient leads to improved study cooperation and outcomes;</td>
<td></td>
</tr>
<tr>
<td>• MOUTH KEPT OPEN – It helps to gently rest a finger on the lower lip to prevent the urge to repeatedly swallow between water bolus‘;</td>
<td></td>
</tr>
<tr>
<td>• ALLOW 5 – 10 MINUTES TO ACCLIMATE – This is time well spent to allow time to adjust to the catheter and to relax;</td>
<td></td>
</tr>
</tbody>
</table>
Esophageal manometry testing:
Related pearls from the field

Catheter intubation:
1. Oral intubation – Not the preferred approach because it causes more gagging and makes it harder for the patient to initiate a swallow;
2. Passing the catheter – ask the patient to:
 • Refrain from swallowing until the catheter has reached the nasopharynx because the soft palate moves up with a swallow to create resistance;
 • Bend their chin toward their chest after the catheter reaches the nasopharynx and before providing small sips of water to “swallow” the catheter;
ESOPHAGEAL MANOMETRY TESTING:
Related pearls from the field

CATHETER INTUBATION:

SUSPECTED ACHALASIA –
• Expect a fluid filled esophagus and attempt passing the catheter without water sips to avoid gagging;
• Screen ahead of the procedure date for consideration of a wire-guided approach;
ESOPHAGEAL MANOMETRY TESTING: RELATED PEARLS FROM THE FIELD

CATHETER COILING:

- Withdraw the catheter
- Reposition the patient, i.e. Standing or turning to a side;
- Re-advance slowly the catheter while the patient is swallowing water to prevent further coiling;
ESOPHAGEAL MANOMETRY TESTING:
Related pearls from the field

GASTRIC BASELINE RECOGNITION –

• Ask the patient to take a deep breath to recognize pressure changes;
• Use all methods of manometric recognition, i.e. color contour plot and waveform analysis, (dark blue and a positive or upward waveform indicates the catheter location is in the stomach);
• Use a Hernia sac as a baseline if catheter coiling continues (pull back the catheter until the LES is identified and above the diaphragmatic hernia;
ESOPHAGEAL MANOMETRY TESTING:
Related pearls from the field

FOR THOSE CURRENTLY USING A WATER PERFUSION CATHETER -

- **PATIENT POSITION** – To prevent pressure artifact
 - ✔ Needs to be recumbent;
 - ✔ Keep the chest parallel to the floor;
- **FLAT LINE?** verify the water is turned on;
- **SLOPED SWALLOW CONTRACTION WAVEFORM WITH JAGGED EDGES?**
 - ✔ Ensure all lines and transducers are bubble free before calibration;
 - ✔ Tap transducer or tubing to dislodge any air bubbles;
ESOPHAGEAL MANOMETRY TESTING: Related pearls from the field

FOR THOSE CURRENTLY USING A WATER PERFUSION CATHETER -

• UES STUDIES — Not accurately performed due to water perfusion dripping in the pharynx and the positioning requirements of the pressure system;

• WANDERING GASTRIC BASELINE? Reposition the catheter away from gastric secretions, wall or folds;

• TEMPERATURE FACTOR – the catheter requires time to warm to the body temperature to avoid erratic pressure or waveform variations;
ESOPHAGEAL MANOMETRY TESTING: Related pearls from the field

pH CATHETER INSERTION:

• pH catheter placement is 5 cm above the LES;
• “C” (curved) shape to the catheter’s distal tip helps passage into the nasopharynx;
• First insert the pH catheter into the stomach to document a gastric pH (usually 1.8 - 2.5 pH) and then pull back the catheter to the recommended depth (5 cm above LES);
ESOPHAGEAL MANOMETRY TESTING:
Related pearls from the field

pH CATHETER INSERTION:

Large hiatal hernia with catheter coiling and gagging?
Stop there, note the pH level and pull back to 5 cm above the LES
ESOPHAGEAL MANOMETRY TESTING:
A whole team effort!

SUPPORT STAFF:

• MD assigned to a study;
• Other experienced colleague to do a conjoint case review (either during test acquisition or analysis);
• Online support (follow your written facility policy for patient privacy concerns and HIPAA);
• Clinic staff written instructions and referral appointments;
• SBAR Protocol for follow-up and quality review of a case outcome;
REFERENCES:

2. J. E. Pandolfino, M. R. Fox, A. J. Bredenoord & P. J. Kahrilas (2009). High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. NEUROGASTROENTEROLOGY. Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

